欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(8)
  • 图书()
  • 专利()
  • 新闻()

氧化铟薄膜制备及其特性研究

原子健 , 朱夏明 , 王雄 , 张莹莹 , 万正芬 , 邱东江 , 吴惠桢 , 杜滨阳

无机材料学报 doi:10.3724/SP.J.1077.2010.00141

采用射频磁控溅射法在玻璃衬底上制备氧化铟薄膜, 通过测试原子力显微镜、X射线衍射、X射线光电子谱、紫外可见分光光度计以及霍尔效应, 研究了氧化铟薄膜的结构和光、电特性. 实验发现, 氧化铟薄膜表面粗糙度随着生长温度的升高而增大. X射线衍射结果表明薄膜为立方结构的多晶体, 并且随着生长温度的升高, 可以看到氧化铟薄膜的晶粒变大以及半高宽减小, 这也说明结晶质量的改善. 在可见光范围的透射率超过90%. 同时, 在氩气氛围下制备的薄膜迁移率最大, 其电阻率、霍尔迁移率和电子浓度分别达到了0.31Ω·cm、9.69cm2/(V·s)和1 ×1018cm-3. 退火处理可以改善氩氧氛围下制备的薄膜的电学性能.

关键词: 氧化铟 , RF magnetron sputtering , surface morphology , XRD , electrical properties

SiO2薄膜对蓝宝石表面及高温强度的改善

冯丽萍 , 刘正堂

无机材料学报

蓝宝石具有一系列优异的光学和力学性能, 使其成为红外透过窗口与头罩中备受青睐的材料. 然而随温度的升高蓝宝石沿c轴的抗压强度急剧降低, 大大限制了蓝宝石的抗热震等许多
性能. 提高蓝宝石高温强度的研究已成为蓝宝石在高速、高温应用中一个亟待解决的重要课题. 本文采用射频磁控反应溅射法在蓝宝石衬底上制备了SiO2涂层. 利用三点弯曲法测
试了镀膜及未镀膜蓝宝石试样的室温及高温抗弯强度, 测量了镀膜前后蓝宝石试样的表面形貌及粗糙度, 采用压痕裂纹法分析了镀膜前后蓝宝石的表面残余应力. 结果表明, 镀SiO2
薄膜可以改善蓝宝石的表面形貌, 降低表面粗糙度, 同时改变蓝宝石的表面应力. 在800℃, 镀膜蓝宝石的抗弯强度是未镀膜蓝宝石的1.5倍.

关键词: 蓝宝石 , SiO2 film , surface morphology , high-temperature strength

低压CVD氮化硅薄膜的沉积速率和表面形貌

刘学建 , 金承钰 , 张俊计 , 黄智勇 , 黄莉萍

无机材料学报

以三氯硅烷(TCS)和氨气分别作为低压化学气相沉积(LPCVD)氮化硅薄膜(SiNx)的硅源和氮源,以高纯氮气为载气,在热壁型管式反应炉中,借助椭圆偏振仪和原子力显微镜,系统考察了工作总压力、反应温度、气体原料组成等工艺因素对SiNx薄膜沉积速率和表面形貌的影响.结果表明:随着工作压力的增大,SiNx薄膜的沉积速率逐渐增加,并产生一个峰值.随着原料气中NH3/TCS流量比值的增大,SiNx薄膜的沉积速率逐渐增加,随后逐步稳定.随着反应温度的升高,沉积速率逐渐增加,在830℃附近达到最大,随着反应温度的进一步升高,由于反应物的热分解反应迅速加剧,使得SiNx薄膜的沉积速率急剧降低.在730-830℃的温度范围内,沉积SiNx薄膜的反应表观活化能约为171kJ/mol.在适当的工艺条件下,制备的SiNx薄膜均匀、平整.较低的薄膜沉积速率有助于提高薄膜的均匀性,降低薄膜的表面粗糙度.

关键词: LPCVD , silicon nitride thin films , growth rate , surface morphology

脉冲频率对纯钛微弧氧化膜生长特性的影响

李全军 , 吴汉华 , 汪剑波 , 顾广瑞 , 金曾孙

无机材料学报 doi:10.3724/SP.J.1077.2006.00488

在Na2CO3-Na2SiO3电解液中, 利用微弧氧化技术在纯钛试样表面制备了氧化膜, 并研究了脉冲频率(500~8000Hz)对膜层生长、相组成及表面形貌的影响. 结果表明: 当脉冲频率<2000Hz时, 膜层的生长速率随频率增加迅速减小, 当>4000Hz时, 其生长速率几乎和频率无关. 微弧氧化膜主要由锐钛矿和金红石相TiO2及少量不饱和氧化物TiO2-x(0.022的相对含量与频率无关, 而TiO2-x随频率的增加而逐渐减少. 氧化膜表面多孔, 随着频率的增加, 膜表面的粗糙度和微孔尺寸逐渐减小, 而微孔的密度逐渐增加.

关键词: 微弧氧化 , pulse frequency , surface morphology , phase component

铝合金微弧氧化陶瓷膜形成过程中的特性研究

吴汉华 , 于凤荣 , 李俊杰 , 吕宪义 , 金曾孙

无机材料学报

保持交流电压脉冲幅度不变,对浸在硅酸钠和氢氧化钠溶液中的铝合金样品进行了微弧氧化处理,发现在陶瓷膜形成过程中,样品的电流随时间明显分成五个不同阶段.对应各阶段所制备的陶瓷膜分别用扫描电镜和X射线衍射仪进行了分析,结果表明,铝合金微弧氧化陶瓷膜主要由γ-Al2O3和α-Al2O3相组成,其含量随氧化时间变化.陶瓷膜内外层α,γ相含量差异主要是由于微弧区熔融的Al2O3凝固时冷却速率不同引起的.

关键词: 微弧氧化 , ceramic coatings , surface morphology , phase component

Al管表面有机杂化膜的制备及性能表征

梁永煌满瑞林

金属学报 doi:10.3724/SP.J.1037.2010.00258

通过化学浸渍在Al管表面钝化生成一层致密疏水的有机杂化膜. 硫酸铜点滴实验、析氢实验和铜盐加速乙酸盐雾试验都表明, 杂化膜显著提高了Al管的耐腐蚀性能,耐蚀效果超过了铬酸盐钝化膜. 电化学Tafel极化曲线和交流阻抗谱(EIS)测定表明, 杂化膜使Al的自腐蚀电位正移, 阻抗值增大, 自腐蚀电流密度降低, 有效降低了Al的腐蚀速率. 附着力及弯折性能实验结果表明, 杂化膜具有良好的附着力和耐弯折性能. SEM和AFM对杂化膜表面形貌分析显示, 杂化膜表面均匀、致密和平整, 膜层由大量无定形的固体颗粒沉积而成, 覆盖度高. EDS检测发现, 杂化膜主要包含Al, C, O, Si和P等元素. 成膜和耐蚀机理分析表明, 有机掺杂钝化液中各组分间发生了反应, 在Al管表面起到协同钝化作用, 均匀成膜, 从而有效增强了Al管的耐腐蚀性能.

关键词: Al管 , organic hybrid film , corrosion resistance , electrochemical property , surface morphology , mechanism

Cu薄膜生长过程的Monte Carlo模拟

王炫力 , 陈冷

人工晶体学报

用动力学晶格蒙特卡洛模型(Kinetic Lattice Monte Carlo,KLMC)模拟Cu薄膜的生长过程,讨论了基底温度、沉积原子数、单原子最大迁移步数和原子相互作用范围等参数对薄膜表面形貌的影响,并与实验结果进行了比较.结果表明:基底温度升高或沉积原子数增加时,沉积在基底上的原子逐步由众多各自独立的离散型分布向聚集状态过渡形成团簇,并且温度越低,团簇越趋于分散生长.当最大迁移步数减小或相互作用范围增大时,团簇亦趋于分散生长.

关键词: KLMC模型 , 薄膜生长过程 , 表面形貌 , Cu薄膜

ATOMIC FORCE MICROSCOPY OBSERVATION OF MAGNETRON SPUTTERED ALUMINUM-SILICON ALLOY FILMS

金属学报(英文版)

粒裕希停桑谩。疲希遥茫拧。停桑茫遥希樱茫希校佟。希拢樱牛遥郑粒裕桑希巍。希啤。停粒牵危牛裕遥希巍。樱校眨裕裕牛遥牛摹。粒蹋眨停桑危眨停樱桑蹋桑茫希巍。粒蹋蹋希佟。疲桑蹋停?##2##3##4##5ATOMICFORCEMICROSCOPYOBSERVATIONOFMAGNETRONSPUTTEREDALUMINUM-SILICONALLOYFILMSJ.W.Wu,J.H.FangandZ.H.Lu(NationalLaboratoryofMoleculeandBiomoleculeElectronics,SoutheastUniversity,Nanjing210096,ChinaManuscriptreceived27October1995)Abstrcat:Twodifferentsurfacemorphologycharacteristicsofmagnetronsputteredaluminumsilicon(Al-Si)alloyfilmsdepositedat0and200℃wereobservedbyatomicforcemicroscopy(AFM).Oneisirregularlyshapedgrainsputtogtheronaplane.TheotherisirregularlyshapedgrainsPiledupinspace.Nanometer-sizedparticleswithheightsfrom1.6to2.9nmwerefirstobserved.Onthebasisoftheseobservationsthegrowthmechanismofmagnetronsputteredfilmsisdiscussed.Keywords:magnetronsputtering,Al-Sialloy,surfacemorphology,atomicforcemicroscopy,filmgrowthmechanism1.IntroductionTheuseofaluminumalloys[1,2],inparticularAl-Si,isacommonfeatureinmanysinglelevelandmultilevelinterconnectionschemesadoptedinthemanufactureofmicroelectronicdevicesbecauseofseveraldesirableproperties.TheAl-Sigrainmorphology(size.geometryanddistributionofgrainsisassociatedwithstepcoverage[3],electromigration[4]andinterconnectsresistivity[5]etc..Thus,characterizationofAl-Sialloysurfacemorphologyisveryimportant,especiallywhenintegratedintensityincreasesandlinewidthsof0.3to0.5μmbecomecommon.Inthepasttwentyyears,theAl-Sialloysurfacemorphologywhichaffectsthereliabilityofmicroelectronicdeviceshasbeenwidelyinvestigatedbyscanningelectronmicroscopy(SEM),transmissionelectronmicroscopy(TEM)etc.[5-7].However,SEMandTEMhavetheirlimitationorinconvenience,forexample,theverticalresolutionofSEMisnothighandTEMneedscomplexsamplepreparation.Recently,anewgrainboundaryetchingmethodwasproposed ̄[8]whichalsoneedstroublesomechemicaletching.Atomicforcemicroscopy(AFM),sinceitsemerging,hasbecomemoreandmoreusefulinphysics,chemistry,materialsscienceandsurfacescience,becauseofitshighresolution,easeofsamplepreparationandrealsurfacetopography.Recently,discussion[9,10]waspresentedonhowAFMwillplayaroleinsemiconductorindustry.Asaresponsetothisdiscussion,weusedAFMtoinvestigateAl-SialloysurfacemorphologyandhaveobtainedsomeresultswhichcannotberevealedbySEMorTEM.ThisindicatesthatAFMisagoodcharacterizationtoolinsemiconductorindustry.2.SamplePreparationInourexperiments,aluminumwith30ppmsiliconwassputteredonsiliconsubstrateinbatchdepositionmodeAllthreefilmswiththicknessof1.6μmweredepositedusinganargonsputteringpressureof4.2×10 ̄-3Pa.TheotherdepositionparametersaredescribedinTable1.Thesubstratewascleanedusingstandardpremetallizationcleaningtechniquespriortofilmdeposition.3.ExperimentalResultsandDiscussionTheAFMmeasurementswereperformedonacommercialsystem(NanoscopeIII,DigitalInstruments,SantaBarbara).Thetipismadeofmicrofabricatedsiliconnitride(Si_3N_4)Itisattachedtoa200μmcantileverwithaforceconstantofabout0.12N/m.Beforethesurfaceofsamplewasexamined.agoodtipwithananometer-sizedprotrusionatitsendwasselectedbeforehand,whichcanbeobtainedbyimagingtheatomicstructureofmicasubstrateandagoldgrid.AtypicaloperatingforcebetweenthetipandAl-Sisamplesurfaceisoftheorderof10 ̄-8Nandallimagesweretakenatroomtemperatureinair.AtypicaltopographicviewoftheAl-SifilmsisshowninFig.1(allimagescansizeis5by5μma,bandcarerespectivelyforsample1,2,and3).FromFig.la,itcanbeseenthatirregularlyshapedgrainstiltinginvaryingdegreespileupinspace,andgroovesamongtheirregularlyshapedgrainsaredifficulttodecideatacertainarea(wedefineitascharacteristicA).Toourknowledge,onreportsonthesurfacemorphologyhavebeenpresentedbefore.InFig1b,however,irregularlyshapedgrainsassembleonaPlaneandgroovesamongtheirregularlyshapedgrainsareeasytodecide(wedefineitascharacteristicB),whichisinagreementwithmanypreviousreports[5-7].InFig.1c,bothcharacteristicA(arrowA)andcharacteristicB(arrowB)wereobserved.IndoingAFMexperiments,weselectedfivedifferentscanareastobeimagedforeachsampleandfoundthatallimagesofeachsamplearerespectivelysimilartoFig.1a,bandc.Also,wenotedthatthesurfaceofinFig.1a.WethinkthatdepositionparameterswillinfluenceAl-Sisurfacemorphology,andthetiltedgrainsmaybesusceptibletomicrocracking.Byreducingthescansizeareato2by2μm(Fig.2aandb).Weobtainedmanyidenticalresultsasdescribedabove,suchasirregularlyshapedgrainsetc.Forthefirsttime,wefoundnanometersizedparticlesonirregularlyshapedgrainsurfacewhichcannotberevealedbySEMbecausethediameterofthesenanoparticlesisabout10nmandtheheightofthesenanoparticlesisintherangeof1.6to2.9nm.Inimaging,wenotedthatrotatingthescandirectionandchangingthescanfrequencydidnotaffectthestructureofthesegrainsasshowninFig.2aandb,rulingoutthepossibilitythatscanninginfluencedtheshapeoftheseparticlesorcausedsomesimilarimagingartifacts.Also,wenotedthatthenanoparticleswerenotobservedontheslopesofthegrooves(Fig.2aandb).Thisphenomenoncanbeexplainedasfollows:thepotentialenergyattheslopeislargerthanthatelsewhere,sotheparticlesseemmorelikelytobedepositedontheseareaswithlowerpotentialenergy.Fig.2c,scansize250by250nm,isazoomtopographicimage(whiteoutlineinb).Itshowsunevendistributionofthenanoparticles.Andtheheightdifferenceofthenanoparticlesindicatesdifferentgrowingspeed.Wethinkbasedonthemorphologyofnanoparticles,thattheheightdifferenceandunevendistributionofthesenanoparticlesshowdifferentgrowingadvantageandindicatethatatomshaveenoughenergytomovetoasuitablegrowingspot.Theenergymaybefromthefollowingsources:surfacetemperaturefluctuation,stressdifferenceorcollisionbetweenhighspeedsputteredatoms.Thesenanoparticlesgoongrowingandformmanyirregularlyshapedgrains.AndtheseirregularlyshapedgrainsfurtherconnecteachotheraccordingtocharacteristicAorB,finallyformingtheAl-Sisurfacemorphology.4.ConclusionWecandrawthefollowingconclusionsfromtheabove.First,theexperimentalresultsshowedthatAFMisapowerfultooltoinvestigatethedetailsofAl-Sisurfacemorphologywhichcangreatlyenrichourknowledgeofthefilmgrowthmechanism.Second,depositionconditionsplayanimportantroleindeterminingtheAl-Sisurfacemorphology.Third,thetwoAl-Sisurfacemorphologycharacteristicsarethatirregularlyshapedgrainsassembleonaplaneandirregularlyshapedgrainstiltinginvaryingdegreespileupinspace.Fourth,forthefirsttime,nanoparticleswereobservedonirregularlyshapedgrainsurfacewhichsuggestedthatthefilmgrowthmechanismwasbyinhomogeneousnucleation.Acknowledgements-BeneficialdiscussionswereheldwithDr.ZhenandMr.Zhu.ThisworkwaspartiallysupportedbytheNationalNaturalScienceFoundationofChina.RFFERENCES||1D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)127.2D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)131.3D.pramanikandA.N.Saxena,SolidStateTechnol.33(1990)73.4S.S.IyerandC.Y.Worg,J.Appl.phys.57(1985)4594.5J.F.Smith,SolidStateTechnol.27(1984)135.6D.GerthandD.Katzer,ThinSolidFilm208(1992)67.7R.J.WilsonandB.L.Weiss,ThinSolidFilm207(1991)291.8E.G.Solley,J.H.Linn,R.W.BelcherandM.G.Shlepr,SolidStateTechnol33(1990)409I.SmithandRHowland,SolidStateTechnol.33(1990)53.10L.Peters,SemiconductorInternational16(1993)62.##61D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)127.2D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)131.3D.pramanikandA.N.Saxena,SolidStateTechnol.33(1990)73.4S.S.IyerandC.Y.Worg,J.Appl.phys.57(1985)4594.5J.F.Smith,SolidStateTechnol.27(1984)135.6D.GerthandD.Katzer,ThinSolidFilm208(1992)67.7R.J.WilsonandB.L.Weiss,ThinSolidFilm207(1991)291.8E.G.Solley,J.H.Linn,R.W.BelcherandM.G.Shlepr,SolidStateTechnol33(1990)409I.SmithandRHowland,SolidStateTechnol.33(1990)53.10L.Peters,SemiconductorInternational16(1993)62.##A##BATOMIC FORCE MICROSCOPY OBSERVATION OF MAGNETRON SPUTTERED ALUMINUM-SILICON ALLOY FILMS$$$$J.W.Wu,J.H. Fang and Z.H.Lu (National Laboratory of Molecule and Biomolecule Electronics,Southeast University,Nanjing 210096, China Manuscript received 27 October 1995)Abstrcat:Two different surface morphology characteristics of magnetron sputtered aluminumsilicon(Al-Si)alloy films deposited at 0 and 200℃ were observed by atomic force microscopy(AFM).One is irregularly shaped grains put togther on a plane.The other is irregularly shaped grains Piled up in space. Nanometer-sized particles with heights from 1.6 to 2.9 nm were first observed. On the basis of these observations the growth mechanism of magnetron sputtered films is discussed.

关键词: :magnetron sputtering , null , null , null , null

出版年份

刊物分类

相关作者

相关热词